1,768 research outputs found

    Many-core compiler fuzzing

    Get PDF
    We address the compiler correctness problem for many-core systems through novel applications of fuzz testing to OpenCL compilers. Focusing on two methods from prior work, random differential testing and testing via equivalence modulo inputs (EMI), we present several strategies for random generation of deterministic, communicating OpenCL kernels, and an injection mechanism that allows EMI testing to be applied to kernels that otherwise exhibit little or no dynamically-dead code. We use these methods to conduct a large, controlled testing campaign with respect to 21 OpenCL (device, compiler) configurations, covering a range of CPU, GPU, accelerator, FPGA and emulator implementations. Our study provides independent validation of claims in prior work related to the effectiveness of random differential testing and EMI testing, proposes novel methods for lifting these techniques to the many-core setting and reveals a significant number of OpenCL compiler bugs in commercial implementations

    A 6-12 GHz Analogue Lag-Correlator for Radio Interferometry

    Get PDF
    Aims: We describe a 6-12 GHz analogue correlator that has been developed for use in radio interferometers. Methods: We use a lag-correlator technique to synthesis eight complex spectral channels. Two schemes were considered for sampling the cross-correlation function, using either real or complex correlations, and we developed prototypes for both of them. We opted for the ``add and square'' detection scheme using Schottky diodes over the more commonly used active multipliers because the stability of the device is less critical. Results: We encountered an unexpected problem, in that there were errors in the lag spacings of up to ten percent of the unit spacing. To overcome this, we developed a calibration method using astronomical sources which corrects the effects of the non-uniform sampling as well as gain error and dispersion in the correlator.Comment: 14 pages, 21 figures, accepted for publication in A&

    A 6-12 GHz Analogue Lag-Correlator for Radio Interferometry

    Get PDF
    Aims: We describe a 6-12 GHz analogue correlator that has been developed for use in radio interferometers. Methods: We use a lag-correlator technique to synthesis eight complex spectral channels. Two schemes were considered for sampling the cross-correlation function, using either real or complex correlations, and we developed prototypes for both of them. We opted for the ``add and square'' detection scheme using Schottky diodes over the more commonly used active multipliers because the stability of the device is less critical. Results: We encountered an unexpected problem, in that there were errors in the lag spacings of up to ten percent of the unit spacing. To overcome this, we developed a calibration method using astronomical sources which corrects the effects of the non-uniform sampling as well as gain error and dispersion in the correlator.Comment: 14 pages, 21 figures, accepted for publication in A&

    Observations of the Crab Nebula with H.E.S.S. Phase II

    Full text link
    The High Energy Stereoscopic System (H.E.S.S.) phase I instrument was an array of four 100 m2100\,\mathrm{m}^2 mirror area Imaging Atmospheric Cherenkov Telescopes (IACTs) that has very successfully mapped the sky at photon energies above ∌100 \sim 100\,GeV. Recently, a 600 m2600\,\mathrm{m}^2 telescope was added to the centre of the existing array, which can be operated either in standalone mode or jointly with the four smaller telescopes. The large telescope lowers the energy threshold for gamma-ray observations to several tens of GeV, making the array sensitive at energies where the Fermi-LAT instrument runs out of statistics. At the same time, the new telescope makes the H.E.S.S. phase II instrument. This is the first hybrid IACT array, as it operates telescopes of different size (and hence different trigger rates) and different field of view. In this contribution we present results of H.E.S.S. phase II observations of the Crab Nebula, compare them to earlier observations, and evaluate the performance of the new instrument with Monte Carlo simulations.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherland

    A 2-20 GHz Analog Lag-Correlator for Radio Interferometry

    Full text link
    We present the design and testing of a 2-20 GHz continuum band analog lag correlator with 16 frequency channels for astronomical interferometry. The correlator has been designed for future use with a prototype single-baseline interferometer operating at 185-275 GHz. The design uses a broadband Wilkinson divider tree with integral thin-film resistors implemented on an alumina substrate, and custom-made broadband InGaP/GaAs Gilbert Cell multipliers. The prototype correlator has been fully bench-tested, together with the necessary readout electronics for acquisition of the output signals. The results of these measurements show that the response of the correlator is well behaved over the band. An investigation of the noise behaviour also shows that the signal-to-noise of the system is not limited by the correlator performance.Comment: accepted for publication by IEEE Transactions on Instrumentation & Measuremen

    The H.E.S.S. II GRB Program

    Full text link
    Gamma-ray bursts (GRBs) are some of the most energetic and exotic events in the Universe, however their behaviour at the highest energies (>10 GeV) is largely unknown. Although the Fermi-LAT space telescope has detected several GRBs in this energy range, it is limited by the relatively small collection area of the instrument. The H.E.S.S. experiment has now entered its second phase by adding a fifth telescope of 600 m2^{2} mirror area to the centre of the array. This new telescope increases the energy range of the array, allowing it to probe the sub-100 GeV range while maintaining the large collection area of ground based gamma-ray observatories, essential to probing short-term variability at these energies. We will present a description of the GRB observation scheme used by the H.E.S.S. experiment, summarising the behaviour and performance of the rapid GRB repointing system, the conditions under which potential GRB repointings are made and the data analysis scheme used for these observations.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherland

    Synthesizing Program Input Grammars

    Full text link
    We present an algorithm for synthesizing a context-free grammar encoding the language of valid program inputs from a set of input examples and blackbox access to the program. Our algorithm addresses shortcomings of existing grammar inference algorithms, which both severely overgeneralize and are prohibitively slow. Our implementation, GLADE, leverages the grammar synthesized by our algorithm to fuzz test programs with structured inputs. We show that GLADE substantially increases the incremental coverage on valid inputs compared to two baseline fuzzers

    Protective effect of ultrathin alumina film against diffusion of iron into carbon fiber during growth of carbon nanotubes for hierarchical composites investigated by ptychographic X-ray computed tomography

    Get PDF
    Composite materials based on carbon fiber (CF) are prone to failure at the fiber-matrix interface upon compression or stress transverse to the fiber axis. The direct growth of carbon nanotubes on CF constitutes a novel approach to enhance the mechanical properties of the interface. However, the challenge is that, during the growth, tensile properties of the fiber are altered due to the diffusion effect of iron nanoparticles used in the process, leading to CF surface defect formation. In this work, we deliver and discuss an analysis methodology on ptychographic X-ray computed tomography (PXCT) images in order to assess the iron nanoparticle abundance within CFs. PXCT provides 50 nm - resolved 3D electron density maps of the CFs. We evidence the protective effect of an ultrathin alumina film against iron infiltration into CF during the CNT growth. This method potentially allows to evaluate the efficiency of other diffusion-minimizing approaches. The conclusions of the PXCT examination are validated by energy-dispersive X-ray spectroscopy and scanning transmission electron microscopy carried out on thin sample slices cut with a focused ion beam. The results provide a new insight into the mechanical performance of CFs and therefore constitute valuable knowledge for the development of hierarchical composites
    • 

    corecore